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Abstract

The capabilities of three volume-of-fluid methods for the calculation of surface tension-dominant two-phase flows are tested. The
accurate calculation of the interface remains a problem for the volume-of-fluid method if the surface tension force plays an important
role and the density ratios of the fluids in different phases are high. The result can be an artificial velocity field at the interface (‘‘parasitic
currents’’), which can destabilize the interface significantly. The three different algorithms compared can be distinguished by their meth-
ods to compute the surface tension force, namely, the method using a kernel function for smoothing the discontinuity at the interface, a
combined level-set and volume-of-fluid approach and a parabolic reconstruction of surface tension. The test cases consist of an equilib-
rium rod, a capillary wave and the Rayleigh–Taylor instability. The analytical solutions for each problem serve to examine the accuracy
and the convergence behavior of each approach. Finally, the slow formation of a gas bubble at an underwater orifice was computed with
the combined level-set and volume-of-fluid method and the results are compared with an analytical solution based on the Young–Laplace
equation.
� 2005 Elsevier Ltd. All rights reserved.
1. Introduction

Numerical methods for computing fluid flows with
material interfaces have become very popular in recent dec-
ades owing to their capability to give a deep insight into the
physical mechanisms. These methods can be divided into
two groups depending on the type of grids used: moving

or fixed grids. In the first group, the interface is treated
as a sharp boundary whose motion is followed, i.e., the
interface is identified with control volume boundaries
dividing the computational domain into more than one do-
main. In the second group, the interface is moved through
a fixed (Eulerian) grid. The interface position is computed
at each time step and in all cells, which are partially filled.
The fixed-grid methods have the advantage that they can
handle strong topological deformations of the interface
such as merging and fragmentation, but may fail to calcu-
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late the surface tension force at the interface accurately
under certain circumstances. The aim of the present study
was to examine three existing methods on fixed grids and
assess their applicabilities in surface tension-dominant
flows.

Two important approaches of fixed-grid methods,
namely the volume-of-fluid and the level-set approaches,
are mentioned in this context. In the level-set method [1],
the interface is defined by a level-set function /. Typically
this function is initialized as a signed distance function
from the interface, positive on one side and negative on
the other side of the interface. The interface itself is repre-
sented by the zero level of /. Based on the calculated veloc-
ity field, the front evolves as a solution of a transport
equation for /, whereby, in general, / does not remain a
distance function at later times. This leads to interface
smearing and difficulties in preserving the mass conserva-
tion. Re-initialization techniques can be employed as intro-
duced first by Sussman et al. [2] to overcome these
problems. The level-set method has the inherent strength
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Nomenclature

E error
F void fraction function
fsa surface tension force per unit area
fsv surface tension force per unit volume
g gravitational acceleration
G error function
h grid spacing
H� smoothed Heaviside function
K wavenumber
K8 smoothing kernel
l shift length of an interface to the cell center
n normal vector
Oh Ohnesorg number
P pressure
r radial component of cylindrical polar coordinates
t time
u velocity component in x-direction
v velocity component in y-direction
v velocity vector (u,v)
V liquid volume fluxed through a cell face
x horizontal coordinate
x position vector
y vertical coordinate
z vertical component of cylindrical polar coordinates

Greek symbols
ds interface Dirac delta function
dV void fraction fluxed through a cell face

Dt time step
Dx, Dy grid spacing in x and y directions
� half width of the transition region
j mean curvature
k wavelength
l dynamic viscosity
q density
r surface tension
/ level-set function

Subscripts

g gas property
i, j ith and jth computational cell in x and y direc-

tions
l liquid property
x, y derivative with respect to x or y

Superscripts
� approximated value
^ unit vector
~ smoothed field
* intermediate value
n nth time step
x, y components in x or y direction
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that / varies smoothly across the interface, which leads to
convenient formulae for the curvature and the interface
normal vector. Owing to its simplicity, the level-set method
has been used in solving a wide variety of problems [3].

In the volume-of-fluid method, the volume of each fluid
is tracked in all cells containing portions of the interface,
rather than the interface itself. A volume (void) fraction
function F is defined for one particular fluid inside a cell
as its material volume divided by the total cell volume.
Hence F is zero or unity in pure fluid cells and has a value
of 0 < F < 1 in multi-fluid cells. Volume-of-fluid algorithms
consist of three major parts, that is, the interface recon-

struction method, which finds an explicit description of
the interface in each multi-fluid cell based on void fractions
at this time step, the advection algorithm, which calculates
the distribution of F at the next time step by solving an
advection equation using the reconstructed interface and
the underlying velocity field, and the surface tension model,
which takes account of surface tension effects at the
interface.

In an incompressible formulation of the governing equa-
tions, conservation of mass is equivalent to conservation of
volume. Hence a volume-of-fluid advection algorithm to
advance the front can be found, which conserves the void
fraction (volume). This procedure requires a non-diffusive
solution of the advection equation, which is obtained by
a geometrically based calculation technique of the void
fraction fluxes at the cell faces based on the reconstructed
interface. The conservation of the volume of each fluid is
an important property of the volume-of-fluid method. In
contrast, in the level-set formulation, / has to be re-initial-
ized after each time step in order to preserve / as a distance
function and to conserve mass, since conservation of / and
mass are not equivalent.

One can give a brief survey of the historical develop-
ment of the volume-of-fluid formulation by considering
the methods for reconstructing the interface. Two early
approaches are the SLIC algorithm (simple line interface
calculation) of Noh and Woodward [4] and the volume-
of-fluid algorithm of Hirt and Nichols [5], in which the
interface is represented by a piecewise-constant line in
each two-fluid cell, either vertically or horizontally. A sig-
nificant improvement of the interface representation was
achieved by Youngs [6] by introducing a piecewise-linear
method (piecewise-linear interface calculation, PLIC).
The method of Youngs was shown to be very robust
and efficient, but only of first-order accuracy. An im-
proved version of phase interface representation (LVIRA)
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was devised by Puckett and co-workers [7] and imple-
mented successfully by Welch and Rachidi [8] and Agar-
wal et al. [9] to predict bubble formation in film boiling.
Here the orientation of the piecewise-linear line segment
is computed more carefully leading to second-order accu-
racy if the interface is sufficiently smooth. Finally, the
recently published method of Renardy and Renardy [10]
should be mentioned, which uses piecewise-parabolic seg-
ments to capture the interface.

In contrast to the interface representation methods, the
methods for introducing surface tension effects at the inter-
face into the physical model remain a problem. In other
words, volume-of-fluid formulations still lack an accurate
method for calculation of surface tension predominantly
in problems with high density ratios. Many recently
published investigations related to this topic can be found
in the literature [10–13]. Generally, the influence of surface
tension is incorporated into the momentum equation fol-
lowing the continuum surface force (CSF) model of Brack-
bill et al. [14]. For doing so, the local curvature and the
interface normal vector have to be calculated. This task is
difficult, since the discontinuous void fraction function dis-
allows the application of ordinary discretization schemes.
An inconsistent calculation of the surface tension force
can then result in the well-known phenomena of so-called
‘‘parasitic currents’’ [15]. These artifacts are a serious prob-
lem for the capability of the volume-of-fluid approach,
since it is a restriction of the approach rather than a numer-
ical inaccuracy. Under some circumstances, it may result in
strong vortices at the interface despite the absence of exter-
nal forcing, which may lead to catastrophic instability of
the interface or even to break-up. Usually problems with
parasitic currents arise when flows with high density ratios
are considered. Unfortunately, a large range of applica-
tions belong to this group, e.g. two-phase flows of air bub-
bles in water or water drops in air. In such problems
surface tension effects often play a dominant role, which
are difficult to access with standard surface tension models.
The amplitude of the spurious currents was estimated by
Lafaurie et al. [15] for the case of a static drop to be of
the order of 0.01r/l, where r and l are the surface tension
coefficient and the viscosity, respectively. The Reynolds
number of the spurious currents is therefore proportional
to 1/Oh2, where Oh is the Ohnesorg number, defined as
Oh = l/(rqL)1/2, q and L being the density and a charac-
teristic length.

The present study is an attempt to examine the capabil-
ities of recently published volume-of-fluid methods in
surface tension-dominant flow problems. The two-dimen-
sional incompressible Navier–Stokes equations for two
immiscible fluids are solved for the test cases of an equilib-
rium rod, a capillary wave and the Rayleigh–Taylor insta-
bility. Analytical solutions are provided for each test case,
making a rigorous validation possible.

Three different surface tension models are considered,
namely (i) an improved version of the method of Brackbill
et al. [14] due to Williams et al. [16], (ii) a combined level-
set and volume-of-fluid approach based on Sussman et al.
[17] and Son [18,19] and (iii) a method using a piecewise-
parabolic representation of the interface based on the work
of Renardy and Renardy [10]. In the following section, the
volume-of-fluid formulation is given and the three algo-
rithms under consideration are described in detail. To val-
idate the interface reconstruction and advection methods,
two test cases are presented in Section 3. The behavior of
each algorithm under surface tension-dominant problems
are discussed in Section 4. In Section 5 the combined
level-set and volume-of-fluid approach is applied to the
problem of the bubble formation at orifices. Water and
air with a density ratio of about 1000 were used as working
fluids. Under low flow rates, where the acting forces can be
reduced to pressure and capillary forces, a comparison of
the full numerical simulation with analytically predicted
bubble shapes during the formation process is possible.
The analytical solution was calculated based on the
Young–Laplace equation for given boundary conditions
[20,21]. This comparison presents a new and useful test case
of engineering relevance.

2. Numerical description

The computational domain is uniformly divided into
control volumes of spacing Dx = Dy = h. Each control
volume is denoted by the indices i, j in the x, y Cartesian
coordinate system. The staggered grid arrangement of Har-
low and Welch [22] is applied, in which the scalar quantities
such as the pressure, the void fraction F and the level-set
function / are defined at the cell centers (i, j) and the vector
quantities such as the velocity components at the cell faces,
i.e. the x-component denoted at the right cell face as ui+1/2,j
and the y-component denoted at the top face as vi,j+1/2.

The interface separates the two fluids, say liquid and
gas. Numerically the particular fluid is defined by the void
fraction Fi,j in each control volume (i, j) as the fraction of
the liquid inside a cell. It follows that

F ¼
0 if there is a gas cell;

1 if there is a liquid cell

�
ð1Þ

and 0 < F < 1 represents a two-phase cell including a por-
tion of the interface.

Based on the void fraction, a single set of equations can
be written for the entire computational domain consisting
of the mass and momentum equations for an incompress-
ible Newtonian fluid, given by

r � v ¼ 0; ð2Þ

qðF Þ ov

ot
þ v.rv

� �
¼ �rP þ qðF Þgþr � lðF Þðrvþ ðrvÞT Þ

� �
þ fsv; ð3Þ

where v = (u,v) is the velocity vector, t is the time, P is the
pressure, g = (0,�g) is the gravitational acceleration, fsv is
the surface tension force and q(F) and l(F) are the density
and viscosity, defined by
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qðF Þ ¼ qlF þ qgð1� F Þ ð4Þ
lðF Þ ¼ llF þ lgð1� F Þ. ð5Þ

The term fsv is the surface tension force per unit volume,
which can be introduced in the momentum equation fol-
lowing the continuum surface force model of Brackbill
et al. [14] as

fsv ¼ rjn̂ds; ð6Þ
where r is the (constant) surface tension coefficient, j is the
mean curvature of the interface, n̂ is the unit normal vector
of the interface and ds is the interface delta function. There-
fore, it is apparent that Eq. (3) simplifies to a general one-
phase momentum equation in the bulk region of either
liquid or gas.

Since the fluid type remains constant along particle
paths, the void fraction F is passively advected by

oF
ot

þ v � rF ¼ 0. ð7Þ

Using the continuity equation (3), the advection equation
(7) can be reformulated into a conservative form as

oF
ot

þr � ðvF Þ ¼ 0. ð8Þ

By solving Eq. (8) numerically, overshoots and under-
shoots can occur, i.e. the void fraction can lie outside the
interval [0,1]. Although these effects are negligibly small,
the interval of the void fraction was ensured by truncation
if necessary. Based on the updated void fraction field, the
fluid properties (Eqs. (4) and (5)) and the surface tension
force (Eq. (6)) are calculated and the interface is recon-
structed using a method described in Section 2.2.
F = 0

F = 1

i+1/2,j

u i+1/2,j ∆t

i+1/2,jV

u

Fig. 1. Calculation of the fluxed void fraction at the right cell face.
2.1. Advection algorithm

Suppose that the velocity field ðuniþ1=2;j; v
n
i;jþ1=2Þ is

known at the time tn = nDt. Also it is assumed that the
interface is reconstructed in all two-phase cells, i.e., cells
which have 0 < Fi,j < 1, in such a way that the interface
defines a liquid and gas region in the cell of volume F n

i;jh
2

and ð1� F n
i;jÞh

2. In order to advance F n
i;j to F nþ1

i;j at time
tn+1 = (n + 1)Dt, the advection equation (8) is solved. This
algorithm is generally referred to as volume-of-fluid advec-
tion algorithm.

Eq. (8) can be discretized by finite-differencing methods
as

F nþ1
i;j ¼ F n

i;j þ
Dt
Dx

ðdV i�1=2;j � dV iþ1=2;jÞ

þ Dt
Dy

ðdV i;j�1=2 � dV i;jþ1=2Þ; ð9Þ

where dVi+1/2,j = (uF)i+1/2,j is, for example, the amount of
liquid void fraction fluxed though the right cell face. To
solve Eq. (9), the operator split approach is applied, result-
ing in two equations:
F �
i;j ¼ F n

i;j þ
Dt
Dx

ðdV i�1=2;j � dV iþ1=2;jÞ þ
Dt
Dx

ðuiþ1=2;j � ui�1=2;jÞ;

ð10Þ

F nþ1
i;j ¼ F �

i;j þ
Dt
Dy

ðdV �
i;j�1=2 � dV �

i;jþ1=2Þ þ
Dt
Dy

ðvi;jþ1=2 � vi;j�1=2Þ;

ð11Þ

where the star (*) denotes the values at the intermediate
stage after the sweep in the first direction. Here it is impor-
tant to explain the third term on the right-hand side of Eqs.
(10) and (11). It can be shown that more accurate results
are obtained by employing this ‘‘divergence correction’’.
In other words, we split oF/ot + $ Æ (v F) = F$ Æ v rather
than Eq. (8) into two equations [7,23].

The task is now to estimate dV for the discretized Eqs.
(10) and (11) in such a way that the solution of the advec-
tion equation conserve the void fraction exactly, i.e. no
numerical diffusion should be introduced. This is obtained
by using a geometrically based calculation of dV. Consider
the right face of a two-phase control volume as depicted in
Fig. 1, where the liquid is located beneath the gas. Based on
the velocity at the right cell face, a portion (ui+1/2,jDt h) of
the control volume can be calculated, whose fluids will be
fluxed into the right neighboring cell, supposing ui+1/2,j is
positive. Knowing the interface position, the amount of
liquid in the fluxed rectangle Vi+1/2,j is computed. Hence
the flux is given by

dV iþ1=2;j ¼
uiþ1=2;jV iþ1=2;j

uiþ1=2;jDtDy
¼ V iþ1=2;j

DtDy
. ð12Þ

After solving Eq. (10) with help of dV calculated as in Eq.
(12), the interface is again reconstructed based on F �

i;j. For
the vertical fluxes the same method is followed, now calcu-
lating geometrically the fluxes of the void fractions crossing
the top and bottom cell face. Hence the new void fraction
field F nþ1

i;j is obtained. The approach can be made second-
order accurate by alternating the sweeping directions in
each time step [24].

Care has to be take for the discretization of the ‘‘diver-
gence correction’’ terms of the right-hand side of Eqs. (10)



744 D. Gerlach et al. / International Journal of Heat and Mass Transfer 49 (2006) 740–754
and (11). By employing an implicit scheme in the first
sweeping direction and an explicit scheme in the second
direction as suggested by Puckett et al. [7], the conservation
of F is maintained.
2.2. Interface reconstruction

As seen in the previous section, the definition of the inter-
face position is required to advance the void fraction field
in time. In the context of the volume-of-fluid approach,
methods for doing this are called interface reconstruction

algorithms. Three different methods are presented here,
which together constitute with their surface tension model
(Section 2.3) three different approaches for solving two-
phase flows including surface tension effects. The interface
reconstruction methods are (i) the least-squares volume-of-
fluid interface reconstruction algorithm (LVIRA) [7], (ii) a
method based on the parabolic reconstruction of surface ten-
sion method (PROST) [10] and (iii) a combined level-set and
volume-of-fluid approach (CLSVOF) [17,19].

Common to all reconstruction methods described here is
that the interface is represented by piecewise-linear inter-
face segments. The position of the interface segment is un-
iquely defined by an interface unit vector n̂ pointing into
the liquid region and a distance l from the cell center to
the interface as indicated in Fig. 2. The aim of the recon-
struction algorithm is to determine n̂i;j and li,j in such a
way that the approximation of the interface reproduces
the updated void fraction Fi,j in each cell exactly. This is
realized by optimizing li,j for a given n̂i;j by means of a stan-
dard root-finding method. The methods for obtaining n̂ are
given below.
2.2.1. LVIRA

LVIRA involves the void fractions of a 3 · 3 block
around the cell of interest to optimize the interface normal
vector. Based on the current approximation n̂i;j and li,j of
the center cell, a straight line is defined through the 3 · 3
block. The optimum value of n̂i;j is the one corresponding
to the minimum of the function
liquid

gas
l

n

Fig. 2. Definition of the piecewise-linear interface.
Gi;jðn̂i;jÞ ¼
X1

k;l¼�1

ðF iþk;jþl � �F iþk;jþlðn̂i;jÞÞ2; ð13Þ

where Fi+k,j+l is the updated (given) void fraction and
�F iþk;jþl is the approximation due to the linear interface
through the block. The optimization algorithm of Eq.
(13) requires an initial guess. An improved version of
Youngs� method [6] has been used to provide the initial
value of n̂i;j as given by Rudman [25] or also known as
the Green–Gauss gradient [26]:

nxi;j ¼
1

Dx
ðF iþ1;jþ1 þ 2F iþ1;j þ F iþ1;j�1

� F i�1;jþ1 � 2F i�1;j � F i�1;j�1Þ; ð14Þ

nyi;j ¼
1

Dy
ðF iþ1;jþ1 þ 2F i;jþ1 þ F i�1;jþ1

� F iþ1;j�1 � 2F i;j�1 � F i�1;j�1Þ. ð15Þ

These stencils themselves have been demonstrated to be
very robust and efficient [25], but only of first-order accu-
racy. In our tests of the interface capturing methods (inter-
face advection together with interface reconstruction)
Youngs� method alone for interface reconstruction is also
considered. More details about the LVIRA method are
given elsewhere [7].

2.2.2. PROST

In the PROST method of the present work the interface
is reconstructed using a piecewise-parabolic curve. Simi-
larly to the approach in the LVIRA method, the parabolic
curve is fitted over 3 · 3 block. The parameters of the curve
defined in the center cell of the block are found such that
the difference between known void fractions and those
based on the parabolic reconstruction is minimized in the
3 · 3 block under consideration.

The parabolic curve is represented by a quadratic equa-
tion of the form

k þ n̂ � ðx� x0Þ þ ðx� x0Þ � Aðx� x0Þ ¼ 0. ð16Þ
This equation describes a parabola if A is a symmetric ma-
trix with the property that An̂ ¼ 0, which ensures that the
axis of the paraboloid is along n̂. The equation thus ob-
tained involves three parameters for our two-dimensional
case: k, one for n, since n̂ can be expressed as sinðhÞ̂i�
cosðhÞ̂j, and one for A. The quadratic equation in two
dimensions can be written in a simplified form as

k þ nxðx� x0Þ þ nyðy � y0Þ

þ a ðx� x0Þðy � y0Þ½ � ðnyÞ2 �nxny

�nxny ðnxÞ2

" #
ðx� x0Þ
ðy � y0Þ

� �
¼ 0.

ð17Þ

These parameters take values such that an error function
defined as

Gi;jðh; k; aÞ ¼
X1

k;l¼�1

wðF iþk;jþl � �F iþk;jþlðh; k; aÞÞ2 ð18Þ
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is minimized. Summation here is over the 3 · 3 block,
which is expected to have at least three and at most five
two-phase cells. As in the LVIRA algorithm, Fi+k,j+l de-
notes the given void fraction and �F iþk;jþl is the approxima-
tion due to the parabolic interface through the block. Two
weight factors w1 Æ w2 = w are used as suggested [10] to
force the optimization method to fit better in cells of F near
to 0 and 1 and to suppress the formation of ‘‘checker-
boards’’ at the interface.

For optimization of the three parameters, the void frac-
tions �F are computed by area calculations. Intersection
points between the current curve fitted and the cell faces
are first identified and two more points are added inside
the cell. The area of the polygon is then calculated by col-
lecting the intersection points together with the cell vertices
lying on the liquid side of the interface in counter-clockwise
direction, so that the area is given by

1

2

Xn

i¼1

ðxiyiþ1 � xiþ1yiÞ; ð19Þ

where n is the number of vertices of the polygon with i = 0
corresponding to i = n.

To minimize the least-squares function (Eq. (18)), the
Hooke–Jeeves pattern search algorithm [27] was applied,
which is a gradient-free algorithm. Parameters k, h and a

thus found define the curve which represents the interface
at the center cell. It is important to note the following dif-
ference between the present implementation and the origi-
nal algorithm [10]. The PROST method presented here also
uses a piecewise-linear interface representation as in the
other two algorithms. The resultant unit normal vector of
the parabola n̂ ¼ ðsinðhÞ; cosðhÞÞ is utilized as the interface
normal vector, defining the position of the interface by
adjusting the distance l. These two values are subsequently
utilized for the advection algorithm (Section 2.1). Hence
the PROST method is used here as a tool for computing
the surface tension force and the surface normal vector
rather than as a complete volume-of-fluid algorithm.
2.2.3. CLSVOF

The CLSVOF method is an attempt to combine the
advantages of the level-set and the volume-of-fluid ap-
proaches. That is, the volume-of-fluid advection algorithm
is applied, because it is mass conserving, and the level-set
function is computed additionally, because its smoothness
allows one to use simple finite-differencing schemes to cal-
culate the interface normal vector and the curvature of the
interface [17–19].

Suppose that the position of the interface is initially
known and the level-set function /i,j is given in each cell
as the signed distance function from the reconstructed
interface. The coupled approach for capturing the interface
is realized by the following steps:

(1) The first sweep, say in the x-direction, of the volume-
of-fluid advection algorithm is performed by solving
Eq. (10). As the result, F �
i;j is known as an intermedi-

ate distribution.
(2) / is advected in the same sweeping direction by solv-

ing the split form of

o/
ot

þ v � r/ ¼ 0. ð20Þ

That is, for the sweep in the x-direction we have

o/
ot

þ u
o/
ox

¼ 0. ð21Þ

The convective term in Eq. (21) is discretized by
employing a second-order ENO scheme as suggested
in [18,28].

(3) Since the level-set field is smooth, the interface nor-
mal vector can simply be calculated by a central
finite-differencing scheme for discretization of

n̂ ¼ r/
jr/j ð22Þ

in all two-phase cells [19]. As given above, the length l

is adjusted to match the given void fraction with that
of the reconstructed interface.

(4) The second sweep in the y-direction (Eq. (11)) leads
to the final distribution F nþ1

i;j in the current time step.
(5) Also the intermediate level-set function is advanced

in the y-direction by solving

o/
ot

þ v
o/
oy

¼ 0. ð23Þ

The discretization scheme is the same as described in
step 2.

(6) The interface is again reconstructed based on / (see
step 3).

(7) Since the finite-differencing scheme for advancing /
(steps 2 and 5) does not conserve the amount of
liquid in the domain exactly, the level-set function
has to be reinitialized in all cells based on the recon-
structed interface. The algorithm to reinitialize / was
implemented following the method of Sussman et al.
[17].

The accuracy of the advection equations of F and / can
be made to second order when the sweeping directions are
changed in each time step (see Section 2.1).
2.3. Surface tension model

In the continuum surface force model (CSF) [14] the
force of interfacial tension is introduced as a surface vol-
ume force fsv (force per unit volume), written as

fsv ¼ fsads; ð24Þ
where ds is the Dirac delta function, which is zero every-
where except at the interface, and fsa is the surface tension
force per unit interfacial area, given as

fsa ¼ rjn̂þrsr; ð25Þ
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where r is the surface tension coefficient, j and n̂ are the cur-
vature and the unit normal vector of the interface and $s is
the surface gradient. In the present work, the tangential
component $sr is omitted, since r remains constant without
temperature or concentration gradients. The first term in
Eq. (25) is the force acting normal to the interface, propor-
tional to the curvature and the surface tension coefficient.
The normal force tends to smooth regions of high values
of j. The surface tension force per unit volume is then

fsv ¼ rjn̂ds. ð26Þ
This expression can be simplified using the definition of the
Dirac delta function [14]

ds ¼
jrcj
½c� ¼ jrcj ¼ jnj; ð27Þ

where c is a characteristic color function defining each fluid
involved and [c] is the jump of the color function (c2 � c1)
across the interface. As will be seen in subsequent sections,
[c] is unity, simplifying ds to jnj. Therefore, the surface ten-
sion force introduced in the momentum equation (3) has
the form

fsv ¼ rjn. ð28Þ
The aimof the surface tensionmodel is to calculate the curva-
ture j and the interface normal vector n. Three methods are
implemented for the three algorithms under consideration.

2.3.1. K8 kernel

In this approach, the void fraction function F is chosen
as the color function. Since F changes abruptly across the
interface, large inaccuracies would be introduced by apply-
ing standard discretization schemes for the spatial deriva-
tives of F. Hence, as in the original CST method
(Brackbill et al. [14]), F is smoothed in a region of finite
thickness concentrated around the interface (transition re-
gion). This mollified void field ~F is obtained by convolving
F with the radially symmetric kernel K8, as suggested by
Williams et al. [16], defined by

K8ðr; �Þ ¼
A½1� ðr=�Þ2�4 if r < �;

0 otherwise;

(
ð29Þ

where � is the size of the support XK of the kernel and A is a
normalization constant to ensure

R
XK

K8ðr; �Þdr ¼ 1, that is,

eF ðxÞ ¼ K8 � F ðxÞ ¼
Z
XK

F ðx0ÞK8ðx0 � xÞdx0. ð30Þ

The normal to the interface n ¼ r~F is computed by a cen-
tral differencing schema on the smooth void fraction field
~F . The curvature

j ¼ �r � n̂ ¼ �r � n

jnj ð31Þ

is found by applying a finite-difference stencil defined on a
3 · 3 matrix (Eqs. (14) and (15)). Since n in Eq. (28) is non-
zero only in the transition region, the surface tension force
acts only in the transition region, which is of finite extent 2�
around the interface. The value of � should be chosen with
caution. Too little smoothing can lead to noise in the cur-
vature field, whereas too much smoothing can violate the
locality of the surface tension force.

2.3.2. PROST
Following the PROST algorithm [10], the local curva-

ture results directly from the optimization procedure de-
scribed in Section 2.2.2. The curvature j at the apex of
the parabola can be found to be j = 2tr(A) = 2a, with A

being the matrix from Eq. (16).
In contrast to the K8 and the following CLSVOF meth-

od, the surface tension force (Eq. (28)) is calculated only in
two-phase cells and not in a transition region. This is a nat-
ural choice and an important feature, since no dependence
of the calculated surface tension force exists on the width of
the transition region. For doing so, the curvature j and the
normal vector n of Eq. (28) have to be known at the cell
faces of the scalar control volumes. The product jn, for
example, at the east cell face is given by

j
oF
ox

����
iþ1=2;j

¼ w1ji;j þ w2jiþ1;j

w1 þ w2

� �
� F iþ1;j � F i;j

Dx

� �
; ð32Þ

where w1 = Fi,j(1 � Fi,j) and w2 = Fi+1,j(1 � Fi+1,j) [10].

2.3.3. CLSVOF

In the combined level-set and volume-of-fluid approach,
advantage is taken of the smooth level-set function /. In
contrast to the discontinuous F field, ordinary discretiza-
tion schemes can be applied to /. The normal vector n is
calculated following Sussman et al. [17] as

n ¼ rH �ð/Þ; ð33Þ
where H� is a smoothed Heaviside function, defined as

H �ð/Þ ¼
0 if / < ��;
1
2
1þ /

�
þ 1

p sin
p/
�

	 
� �
if j/j 6 �;

1 if / > �.

8><>: ð34Þ

The choice of H�(/) instead of / for computing n guaran-
tees a finite thickness of the transition region of 2�.

The curvature j is given by

j ¼ �r � n̂ ¼ r � r/
jr/j

¼ �
/2

y/xx � 2/x/y/xy þ /2
x/yy

ð/2
x þ /2

yÞ
3=2

. ð35Þ

Eqs. (33) and (35) are discretized by ordinary central-differ-
encing schemes.

Instead of using expression (26) for the calculation of the
surface tension force based on the continuum surface force
model of [14], the continuous surface stress model (CSS)
[15,29] can also be used, i.e. fsv ¼ r � 1� n̂� n̂ð Þrds½ �. Both
expressions can be shown to be equivalent for constant r
[15]. Tests of the CSS method in the context of the CLSVOF
approach applied to the problem of an equilibrium rod as
discussed in Section 4.1 shows that the CLSVOF-CSF
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method works slightly better than the CLSVOF-CSS ap-
proach. Hence the results presented below are based on
the CLSVOF-CSF method.

2.4. Outline of the numerical solution procedure

The methods in Sections 2.1–2.3 describe the special fea-
tures of volume-of-fluid methods compared with common
one-fluid finite-differencing flow solvers. These methods
are incorporated into a solution process as follows. A stag-
gered MAC grid [22] is used as the basis for the numerical
algorithm. The convective term in the momentum equation
(3) is discretized by an essentially non-oscillatory (ENO)
scheme of second order (see, e.g, [28]). All other space
derivatives are centered. Suppose the void fraction distri-
bution Fn at the time tn = nDt is known, the densities and
viscosities at tn are calculated from Eqs. (4) and (5) based
on F in the PROST method, on the smoothed void fraction
field ~F for the K8 method (Eq. (30)) and on the Heaviside
function (Eq. (34)) for the CLSVOF method. Also the sur-
face tension force (Eq. (28)) is computed using the methods
in Section 2.3. Then the discretized form of the momentum
equation (3) is solved explicitly, resulting in an intermediate
velocity field, which is, in general, not divergence free
(Eq. (3)), because the pressure gradient is discretized using
values at the old time step tn. Therefore, the velocity at the
new time step is eliminated from the discretized continuity
and momentum equations in such a way that the solution
of the resulting pressure equation assures that the velocity
field satisfies the continuity equation. An iterative method
based on a preconditioned conjugate gradient scheme of
Van der Vorst [30] is used for solving the pressure equation.
Based on the velocity field at the new time step, the advec-
tion equations (10) and (11) (for the combined level-set and
volume-of-fluid approach also Eqs. (21) and (23)) are
solved followed by a reconstruction of the interface.

The solution scheme described above is second order in
space and first order in time. Time step restrictions exist for
the present procedure owing to the advection algorithm
and the explicit treatment of the convection term in Eq.
(3). Of these two CFL constraints, the first one is more
restrictive, which requires that the sum of the volume
fluxed over the cell faces must be smaller than the total cell
volume. This can be ensured by

Dtc 6
h

2maxðjvjÞ . ð36Þ

Furthermore, the explicit treatment of the surface tension
term also results in a restriction as given in Ref. [14] as

Dts <
ðq1 þ q2Þh3

4pr

� �1=2
. ð37Þ

The time step is chosen to be smaller than Dtc and Dts.
Finally, the three different algorithms compared in Sec-

tion 4 have to be defined. Since the advection algorithm is
the same for all approaches, only the interface reconstruc-
tion methods and the surface tension models are listed.
• K8: LVIRA (interface reconstruction, Section 2.2.1), K8

kernel (surface tension model, Section 2.3.1).
• PROST: Section 2.2.2 (interface reconstruction) and
2.3.2 (surface tension model).

• CLSVOF: Section 2.2.3 (interface reconstruction) and
2.3.3 (surface tension model).

3. Validation of the interface tracking algorithms

Before the three methods are applied to solve the Na-
vier–Stokes equations including surface tension effects,
the interface reconstruction and advection algorithms are
validated. Two test cases were chosen from Rudman [25],
namely the advection of a hollow square and a circle in
shear flow. For the simulation of such test cases, the initial
field of F is carefully provided and the initial interface is
reconstructed. The velocity field is known in advance and
is held constant with respect to time. The time cycle itself
consists only of the advection sweeps of F (and / for the
CLSVOF method) followed by an interface reconstruction.
Analytical solutions allow a rigorous check of the methods.

3.1. Advection of a hollow square

The configuration of this test case is a hollow square,
which is aligned with the coordinate axes as given in Ref.
[25] and outlined in Fig. 3. The square is exposed to a con-
stant, unidirectional velocity field v = (2,1). Using a mesh
size of 200 · 200, the hollow square is advected 500 time
steps with a cell Courant number (CFL) of 0.25. The meth-
ods tested are distinguished by their interface reconstruc-
tion method (Section 2.2), since the advection algorithm
is identical in all methods. The accuracy of each method
can be measured by the error E, given as

E ¼
P

i;jjF
comp
i;j � F exact

i;j jP
i;jF

0
i;j

; ð38Þ

where F comp
i;j and F exact

i;j are the computed and the exact void
fraction after 500 time steps and F 0

i;j is the initial distribu-
tion. The results are provided in Table 1. In addition to
Rudman�s value using his modified Youngs� method,



Table 2
Results of a circle in shear flow after 1000Dt and 2000Dt integrated
forwards and backwards

Method E(N = 1000) E(N = 2000)

Youngs 8.389 · 10�3 3.725 · 10�2

LVIRA 6.550 · 10�3 3.340 · 10�2

CLSVOF 5.084 · 10�3 2.648 · 10�2

PROST 6.215 · 10�3 3.191 · 10�2

Youngs (Rudman) 8.60 · 10�3 3.85 · 10�2

The CFL number is 0.25.
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Table 1
Results of the hollow square after 500 time steps with CFL = 0.25

Method E

Youngs 2.691 · 10�2

LVIRA 3.340 · 10�2

CLSVOF 2.410 · 10�2

PROST 2.789 · 10�2

Upwind O(1) 0.733
ENO O(2) 0.285
Youngs (Rudman) 2.58 · 10�2
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results of advecting F with a first- and second-(ENO) order
upwind discretization scheme are added.

The present results are in good agreement with the liter-
ature value. A more detailed examination of the simula-
tions shows that all methods face the problem of
resolving the corners of the hollow square. This leads to
rounding of the corners. At least for the LVIRA method,
it is known that second-order accuracy can only be ob-
tained if the interface is sufficiently smooth [7]. Hence
improvements to Youngs� first-order method are small or
the results are even slightly worse. As known in the litera-
ture, ordinary upwind discretization schemes are not
appropriate for the present purpose.
x
0 0.5 1 1.5 2 2.5 3

0

0.5

Fig. 4. Computed interfaces after 1000Dt forward and after 1000Dt
forward and backward time integrations using the CLSVOF method.
3.2. Circle in shear flow

The second advection test represents a more realistic
problem than the translation test in the previous section.
In such translation test cases, the deformation of the inter-
face is missing, i.e. the velocity field satisfies not only
$ Æ v = 0, but also ou/ox 5 0 and ov/oy 5 0. This was
pointed out by Rider and Kothe [31], showing that simple
translation and rotation problems are not sufficient to ver-
ify the ability of interface tracking methods. Typically
interfaces in real problems undergo strong topological
changes, including merging and fragmentation. A test
problem taking such shear effects into account is the circle
placed in a single vortex [31]. In the present study, param-
eters of this test case are taken from Ref. [25].

The velocity field is defined by

u ¼ sinðxÞ cosðyÞ and v ¼ � cosðxÞ sinðyÞ. ð39Þ
The computational domain has a square shape of edge
length p resolved by 100 · 100 control volumes. A circle
of radius p/5 is placed at (p/2,p/4). In order to check the
results with a known solution, the simulations are
integrated in time N = 1000 or 2000 time steps forward
followed by the same number of time steps backward, in
which the signs of the velocity components (Eq. (39)) are
reversed. Hence the final void fraction distribution should
be exactly the same as the initial one. The error is calcu-
lated by Eq. (38). The mesh Courant number is 0.25.

The results of the error norm are provided for the two
cases N = 1000 and 2000 in Table 2. The development of
the interface for N = 1000 is depicted in Fig. 4 after
1000Dt forward and after 1000Dt forward and backward
integrations. The interface represents the true interface
computed by the interface reconstruction method, i.e. the
midpoint of each linear segment is shown. Using contour
lines of the void fraction field would mean to smooth the
interface representation.

The results of the present study prove the reliability of
the interface capturing algorithms. It should be noted that
the mass conservation, which can be defined as the change
of liquid in the domain during computations as DV l ¼
ð
P

i;jF
0
i;j �

P
i;jF i;jÞDxDy, of the shear test case is smaller

(10�4) than that in the simple translation case (10�9) for
all methods. This effect of strong vorticity can be improved
by grid refinement.

4. Results and discussion

4.1. Equilibrium rod

The comparison of the three surface tension methods
described in Section 2.3 starts with the standard test case
of a static rod. Since the gravity and other external forces
are absent and an inviscid fluid is assumed, only the surface
tension force is balanced by the pressure force. This results
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in a pressure jump at the interface given by the Laplace
equation from zero outside the rod to the value of

P drop ¼ rj ¼ r
R
; ð40Þ

inside the rod, where R is the radius of the circle.
We chose a 6 · 6 cm domain, divided into equally

spaced control volumes of h = 0.2, 0.1, and 0.05 cm (reso-
lution of 30 · 30, 60 · 60 or 120 · 120). The rod of radius
R = 2 cm has a density of ql = 1 g/cm3, placed at the point
(3,3) inside the background fluid of density qg = 0.5 or
0.001 g/cm3. The surface tension coefficient is given as
23.61 g/s2. According to the Laplace equation (40), the
pressure jump is 11.805 g/s2. This exact value is compared
with the computed pressure inside the drop determined by

hP i ¼ 1

Nd

XNd

i;j¼1

P i;j; ð41Þ

where the sum is over Nd cells having a density
q P 0.99 Æ ql. We can also estimate an L1 and L2 error
norm given by

L1 ¼
PNd

i;j¼1P i;j � P drop

NdP drop

�����
����� and

L2 ¼
PNd

i;j¼1ðP i;j � P dropÞ2

N dP 2
drop

" #0:5

. ð42Þ

Ideally, the pressure field should be constant inside the
drop and should be exactly balanced by the surface tension
force at the interface. Hence any velocity field is an unphys-
Table 3
Comparison of the surface tension models with the result of Brackbill et al. [1

Method hPi
P drop

L2

R/Dx = 20, ql/qg = 2
PROST 1.0007 3.02 · 10�3

K8 0.9844 5.72 · 10�2

CLSVOF 0.9951 3.84 · 10�2

Brackbill 1.016 2.82 · 10�2

Table 4
Convergence study of the surface tension models for a density ratio ql/qg = 10

R
Dx

hPi
P drop

L2 L

PROST, ql/qg = 1000
10 1.0048 4.83 · 10�3 4.
20 1.0009 9.79 · 10�4 9.
40 1.00007 5.25 · 10�4 7.

K8, ql/qg = 1000
10 0.9783 7.60 · 10�2 2.
20 0.9867 4.90 · 10�2 1.
40 0.9881 3.86 · 10�2 1.

CLSVOF, ql/qg = 1000
10 0.9886 4.99 · 10�2 1.
20 0.9925 3.17 · 10�2 7.
40 0.9971 2.22 · 10�2 2.
ical numerical artifact, which is known as ‘‘parasitic
currents’’ [15]. A measure of the spurious currents is the
maximal velocity in the computational field, which is given
in the present work after one and 50 time steps
(Dt = 10�5 s).

First we recalculate a case considered by Brackbill et al.
[14] using qg = 0.5 g/cm, i.e. ql/qg = 2. The results are
summarized in Table 3 for the medium grid resolution
(R/Dx = 20). The value of Brackbill et al. [14] is their best
result obtained by employing the unsmoothed density field
at the interface for computing the interface normal vector
and a smoothed field for the curvature. Furthermore, a
convergence study was performed for the case of ql/qg =
1000. The radius of the rod was resolved by 10, 20 and
40 control volumes. The data are provided in Table 4.

The results show the excellent properties of the PROST
method compared with the K8 and CLSVOF methods,
which can be clearly seen for the more demanding case of
a high density ratio (Table 4). A convergence rate of about
one or higher is found for PROST. Our experience is that
the performance of the CLSVOF and K8 methods are
dependent on the width of the transition region, which is
not the case for the PROST method. We chose a width
of three control volumes for both methods (CLSVOF
and K8), which gave good results for the other test prob-
lems as well.

Also, it is very important to examine the development of
the spurious currents resulting from inconsistent calcula-
tion of the surface tension force. Since we consider an invis-
cid fluid, inaccuracies of the surface tension force introduce
4] using ql/qg = 2

L1 jumax,1j jumax,50j

7.18 · 10�4 1.14 · 10�7 5.69 · 10�6

1.56 · 10�2 7.45 · 10�7 3.59 · 10�5

4.83 · 10�3 9.69 · 10�7 4.71 · 10�5

– – –

00 on three different grid refinement levels

1 jumax,1j jumax,50j

81 · 10�3 7.82 · 10�8 3.91 · 10�6

48 · 10�4 1.70 · 10�7 8.53 · 10�6

04 · 10�5 4.34 · 10�7 2.17 · 10�5

17 · 10�2 2.28 · 10�6 1.12 · 10�4

33 · 10�2 5.33 · 10�6 2.66 · 10�4

19 · 10�2 4.62 · 10�5 2.31 · 10�3

14 · 10�2 1.16 · 10�6 5.68 · 10�5

53 · 10�3 5.97 · 10�6 2.92 · 10�4

92 · 10�3 1.91 · 10�5 9.37 · 10�4
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Fig. 5. Amplitude of the capillary wave in the viscous case compared with
the analytical solution of Prosperetti [34]. The results of the PROST and
CLSVOF methods are not distinguishable in this figure.
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an undamped velocity field in the vicinity of the interface.
Again, the PROST methods minimize successfully the
spurious currents compared with the other methods. A
comparison of Tables 3 and 4 indicates the weak depen-
dence of PROST on the density ratio compared with K8

and CLSVOF. However, for all three methods the spurious
currents increase with grid refinement.

4.2. Capillary wave

This test case deals with the damped oscillation of an
interface between two viscous fluids without external
forces. The interface has initially a cosine-shaped perturba-
tion and the two fluids being quiescent. The parameters of
the test are the same as given by Popinet and Zaleski [11],
who used a different approach for interface tracking. In
contrast to the volume-of-fluid methods used in the present
study, which can be called an implicit or front-capturing
method, they used an explicit or front-tracking method, be-
cause the interface is given explicitly by interface marker
particles. Hence the capabilities of our methods can be di-
rectly compared with another approach well established in
the literature [32,33]. Furthermore, an analytical solution
based on the work of Prosperetti [34] serves as a measure
of the absolute deviation compared with the true solution.

The computational domain is a square box of width
H = k = 2p/K, where k and K are the wavelength and
wavenumber, respectively. The viscosities and densities of
the two fluids are the same, resulting in a non-dimensional
viscosity � = lK2/(qx0) = 6.472 · 10�2, where x0 is defined
by the dispersion relation x2

0 ¼ rK3=ð2qÞ of the linear the-
ory of an interface oscillation between two inviscid fluids.
The Ohnesorg number Oh ¼ l=ðrqkÞ1=2 ¼ 1=

ffiffiffiffiffiffiffiffiffiffi
3000

p
and

the initial interface perturbation is 0.01H.
The time evolution of the capillary wave is given in

Fig. 5 for the three methods under consideration up to a
non-dimensional time s = tx0 = 25. The amplitude is nor-
malized by the height of the initial perturbation. The
results of the PROST and CLSVOF methods are close
and can be better examined by calculating the relative error
with the analytical solution (see Table 5). The error is de-
fined by the rms of the difference between the normalized
solutions. For comparison, the values of Popinet and
Zaleski [11] for this test case are added. The PROST and
CLSVOF methods are shown to perform well and the
results are comparable to those of the front-tracking meth-
od of Popinet and Zaleski.
Table 5
Relative error between our volume-of-fluid methods and the analytical solutio

Grid PROST CLSVOF

82 0.2960 0.3169
162 0.0818 0.0991
322 0.0069 0.0131
642 0.0018 0.0033

For comparison the results of Popinet and Zaleski [11] are added.
4.3. Rayleigh–Taylor instability

The instability of an interface between two fluid layers is
considered when the heavier fluid lies over a lighter fluid
and acceleration is directed from the heavier to the lighter
fluid. If the interface is disturbed by a small perturbation,
the instability grows exponentially as exp(nt) with time.
Under the assumptions that the fluids are inviscid, incom-
pressible and of infinite depth and the non-linear terms are
small, Bellman and Pennington [35] extended the work of
Rayleigh and Taylor by including surface tension in their
analytical solution. The growth rate n was given by them as

n2 ¼ Kg A� K2r
gðq1 þ q2Þ

� �
; ð43Þ

where K is the wavenumber of the perturbation, g is the
gravitational acceleration perpendicular to the interface,
A = (q2 � q1)/(q1 + q2) and q1 and q2 are the densities of
the lighter and heavier fluid, respectively. Following Daly
[36], it is helpful to introduce a ratio

U ¼ r
rc

¼ rK3

ðq2 � q1Þg
; ð44Þ

where rc is a critical value of the surface tension coeffi-
cient for which n = 0. This ratio is a useful measure of
the importance of the surface tension compared with
n for different grid refinement levels

K8 Popinet and Zaleski

0.4542 0.2972
0.2433 0.0778
0.1095 0.0131
0.0456 0.0098
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acceleration, implying instability for U < 1. Numerical sim-
ulations are performed in the range 0.05 < U < 0.9. K is
chosen to be unity, leading to a domain width of L =
Table 6
Error of the growth rate n between the numerical and analytical results for the t
importance of the surface tension U

Grid U = 0.05 U = 0.25

PROST 20 · 60 5.7% 6.2%
40 · 120 2.3% 2.4%
80 · 240 1.0% 1.0%

CLSVOF 20 · 60 7.4% 7.7%
40 · 120 2.7% 3.4%
80 · 240 0.8% 1.5%

K8 20 · 60 8.7% 8.1%
40 · 120 3.6% 3.4%
80 · 240 1.5% 1.0%

Exact n 2.365 2.101
(2p/K) = 2p. The Atwood number is A = 0.6. For normal-
ization, the characteristic length K�1 and time n(r = 0)�1

are used. The non-dimensional time is denoted by s.
In the following, attempts have been made to examine

the influence of the surface tension (U) on the evolution
of the instability and the influence on the efficiency of
the surface tension algorithms. The interface shapes for dif-
ferent values of U at the particular time instant s = 10 are
depicted in Fig. 6 for computations on an 80 · 240 grid
using the PROST method. It can be seen that the growth
rate of the instability is significantly delayed if U is
increased.

The growth rate n can be examined by a comparison
with the analytical solution. Therefore, a dependence n =
f(U) can be obtained by combining Eqs. (43) and (44).
Numerically, the growth rate is calculated by observing
the interface amplitude at the middle of the domain width
with time. A linear region can be identified, when the log-
arithm of the amplitude is plotted, which will give the
growth rate by applying linear regression. This was done
for the three algorithms for U = 0.05, 0.25, 0.5, 0.75 and
0.9. The results using the PROST method for three differ-
ent grid levels (20 · 60, 40 · 120 and 80 · 240) are com-
pared with the analytical solution in Fig. 7. The
agreement with the analytical curve is excellent and the re-
sults can be seen to be improved compared with those of
Brackbill et al. [14].

The three methods can be compared more accurately by
calculation of the error between the computed and analyt-
ical results as provided in Table 6. For high values of U
(0.75,0.9), the K8 method diverges or fails to predict the
growth rate of the Rayleigh–Taylor instability. This can
be ascribed to the strong spurious currents occurring at
the interface in the case of the K8 method, as already shown
by the equilibrium rod test (Section 4.1). The resulting
interface oscillations disturb the evolution of the interface.
However, for the remaining values of U converging results
were obtained. Additionally, an increase in the error with
increasing U for the CLSVOF and K8 methods can be iden-
tified. In contrast, the behavior of the PROST method can
be seen to be independent of U.
hree methods considered (PROST, CLSVOF, K8) depending on the relative

U = 0.5 U = 0.75 U = 0.9

6.1% 6.0% 3.5%
2.7% 2.7% 0.9%
0.9% 1.9% 0.9%

8.5% 10.1% 15.3%
4.4% 5.2% 7.5%
2.1% 2.7% 3.5%

9.1% 1.4% 26.0%
3.8% 2.2% 26.0%
2.1% 3.0% 29.0%

1.716 1.213 0.767
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5. Bubble formation at an underwater orifice

The last problem considered here is of bubble formation
and its detachment from an underwater orifice. The forma-
tion process of gas bubbles from orifices is of importance in
many industrial applications. In the case of inter-phase
transport processes, one of the aims is to increase the inter-
facial area between the two phases to obtain greater trans-
fer rates. Thus the bubble size distribution produced at the
orifices is of interest. In this section the combined level-set
and volume-of-fluid method is applied to simulate the bub-
ble formation process at a single orifice with the aims,
firstly, to demonstrate the capability of the CLSVOF meth-
od to simulate engineering problems and, secondly, to pres-
ent a test case for the comparison and validation between
the numerical and analytical results for the bubble forma-
tion at low flow rates.

For the present case of very low flow rate ( _Q ¼
1 ml=min), the formation can be predicted analytically by
means of the solution of the Young–Laplace equation, as
it was done, for example, in [20]. Thus the formation is con-
sidered to happen quasi-static, so that the force balance at
the bubble interface consists only of capillary and pressure
forces. The resulting ordinary differential equation still
contains the radius of curvature at the bubble apex R0 as
a free parameter and has to be solved numerically. The re-
sult of the solution of the Young–Laplace equation is an
axisymmetric bubble shape and thus its volume can be
determined for the given boundary conditions. The com-
plete evolution of a static formation can be predicted by
solving the differential equation for varying values of R0

in such a way that the bubble volume and height increases
in each step consecutively. This procedure can be continued
until the largest bubble volume in equilibrium is found
under the given boundary conditions [20]. It may be men-
tioned that after this stage, the bubble detaches dynami-
cally. For the present theoretical calculations, the method
described in [21] has been applied and a good agreement
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Fig. 8. Comparison of the bubble shapes at formation between the C
was found between the analytical and experimental results
for the quasi-static bubble formation.

For the numerical simulation of the bubble formation,
the CLSVOF method (Section 2) was transformed to an
axisymmetrical (r,z) coordinate system. Water and air at
20 �C were chosen as the working fluids for the present
calculations, i.e. the density ratio is about 1000. At the
orifice of diameter 3 mm the gas flows with a defined par-
abolic velocity profile. A flow rate of 1 ml/min into the
computational domain is considered. Symmetry boundary
conditions are defined at the sidewalls and outflow condi-
tions at the top boundary. The bubble is forced to be
attached to the orifice rim. Variable time stepping was
employed to overcome the problem of different time scales
during quasi-static formation and highly dynamic
detachment.

In Fig. 8 the comparison between the CLSVOF simula-
tion and the analytical bubble shapes is shown. For the
CLSVOFmethod the bubble contour is given by dots, where
each dot corresponds to the midpoint of a line segment in a
two-phase cell, and the analytical solution is represented by
a few points of the calculated contour (circles). The time dif-
ference between the shapes shown is 0.5 s , except the last
one, which presents the final equilibrium shape obtainable
with the analytical approach. From this time instant, the for-
mation continues dynamically, as shown by the further re-
sults of the CLSVOF method in Fig. 9, where a time gap
of about 0.01 s persists between the figures in sequence.

In order to calculate theoretically the bubble volume
after the detachment, one typically takes the neck volume
(bubble volume above the bubble neck) of the last static
bubble [20], since it cannot be assumed that the gas above
the orifice detaches completely (see, e.g., Fig. 9). The theo-
retically predicted time period for detachment at the 3 mm
orifice is 3.06 s. The time period measured by the CLSVOF
method is 2% higher. Further comparisons have been done
for a 2 mm orifice, where the same level of accuracy has
been obtained.
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LSVOF method (dots) and the analytical solution (open circle).
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Fig. 9. Detachment of a bubble computed with the CLSVOF method.
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The agreement between the theory and simulation con-
firms the quality of the present CLSVOF approach also
for high density ratios.

6. Conclusions

Two-dimensional numerical simulations of an equilib-
rium rod, a capillary wave and the Rayleigh–Taylor
instability were performed by means of three different vol-
ume-of-fluid algorithms. The three methods considered are
an improved version of the method of Brackbill et al. [14]
due to Williams et al. [16], a combined level-set and vol-
ume-of-fluid approach based on the work of Sussman
et al. [17] and Son [18,19] and a method using a piece-
wise-parabolic representation of the interface for the sur-
face tension and the interface normal calculation due to
Renardy and Renardy [10]. The methods are named K8,
CLSVOF and PROST, respectively. The accuracy, the con-
vergence behavior and the influence of ‘‘parasitic currents’’,
which are a consequence of inaccurate calculations of the
surface tension force, were examined in detail for each
method.
The study revealed that the PROST method is superior
to the CLSVOF and K8 methods. High accuracy and a suc-
cessful reduction of the parasitic currents compared with
the other two methods feature this approach. However,
the optimization of the least-squares function (Eq. (18))
is computationally intensive, and from this perspective,
CLSVOF presents a true alternative to PROST. The imple-
mentation of the CLSVOF method is straightforward and
the algorithm is the fastest considered here. Recent
improvements [37] of this method are highly promising.
However, the results obtained here are not as good as for
the PROST method, but might be sufficient for a large
number of applications. In contrast, the K8 method was
demonstrated to have weaknesses in the surface force cal-
culation. The parasitic currents at the interface led to
diverging or wrong results for the case of the Rayleigh–
Taylor instability (Table 6).

Finally, the present CLSVOF method was used to sim-
ulate the slow formation of a gas bubble at an underwater
orifice. The calculations have been done for the water–air
system, for which the density ratio is about 1000. The
low flow rate considered here allows a comparison of the
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computed bubble shapes during formation with an analyt-
ical solution. Good agreement was found between the
numerically calculated bubble contours with their analyti-
cal counterpart.
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